MySQL数据查询太多会怎么样

这篇文章主要介绍“MySQL数据查询太多会怎么样”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“MySQL数据查询太多会怎么样”文章能帮助大家解决问题。主机内存只有100G,现在要全表扫描一个200G大表,会不会把DB主机的内存用光?逻辑备份时,可不就是做整库扫描吗?若这样就会把内存吃光,逻辑备份不是早就挂了?所以大表全表扫描,看起来应该没问题。这是为啥呢?全表扫描对server层的影响假设,我们现在要对一个200G的InnoDB表db1. t,执行一个全表扫描。当然,你要把扫描结果保存在客户端,会使用类似这样的命令:InnoDB数据保存在主键索引上,所以全表扫描实际上是直接扫描表t的主键索引。这条查询语句由于没有其他判断条件,所以查到的每一行都可以直接放到结果集,然后返回给客户端。那么,这个“结果集”存在哪里呢?服务端无需保存一个完整结果集。取数据和发数据的流程是这样的:获取一行,写到**「net_buffer」。这块内存的大小是由参数「net_buffer_length」**定义,默认16k重复获取行,直到**「net_buffer」**写满,调用网络接口发出去若发送成功,就清空**「net_buffer」,然后继续取下一行,并写入「net_buffer」**若发送函数返回**「EAGAIN」或「WSAEWOULDBLOCK」**,就表示本地网络栈(socket send buffer)写满了,进入等待。直到网络栈重新可写,再继续发送查询结果发送流程可见:一个查询在发送过程中,占用的MySQL内部的内存最大就是**「net_buffer_length」**这么大,不会达到200Gsocket send buffer 也不可能达到200G(默认定义/proc/sys/net/core/wmem_default),若socket send buffer被写满,就会暂停读数据的流程所以MySQL其实是“边读边发”。这意味着,若客户端接收得慢,会导致MySQL服务端由于结果发不出去,这个事务的执行时间变长。比如下面这个状态,就是当客户端不读**「socket receive buffer」**内容时,在服务端show processlist看到的结果。服务端发送阻塞若看到State一直是“Sending to client”,说明服务器端的网络栈写满了。若客户端使用–quick参数,会使用mysql_use_result方法:读一行处理一行。假设某业务的逻辑较复杂,每读一行数据以后要处理的逻辑若很慢,就会导致客户端要过很久才取下一行数据,可能就会出现上图结果。因此,对于正常的线上业务来说,若一个查询的返回结果不多,推荐使用**「mysql_store_result」**接口,直接把查询结果保存到本地内存。当然前提是查询返回结果不多。如果太多,因为执行了一个大查询导致客户端占用内存近20G,这种情况下就需要改用**「mysql_use_result」**接口。若你在自己负责维护的MySQL里看到很多个线程都处于“Sending to client”,表明你要让业务开发同学优化查询结果,并评估这么多的返回结果是否合理。若要快速减少处于这个状态的线程的话,可以将**「net_buffer_length」**设置更大。有时,实例上看到很多查询语句状态是“Sending data”,但查看网络也没什么问题,为什么Sending data要这么久?一个查询语句的状态变化是这样的:MySQL查询语句进入执行阶段后,先把状态设置成 「Sending data」然后,发送执行结果的列相关的信息(meta data) 给客户端再继续执行语句的流程执行完成后,把状态设置成空字符串。即“Sending data”并不一定是指“正在发送数据”,而可能是处于执行器过程中的任意阶段。比如,你可以构造一个锁等待场景,就能看到Sending data状态。读全表被锁:Sending data状态可见session2是在等锁,状态显示为Sending data。仅当一个线程处于“等待客户端接收结果”的状态,才会显示”Sending to client”若显示成“Sending data”,它的意思只是“正在执行”所以,查询的结果是分段发给客户端,因此扫描全表,查询返回大量数据,并不会把内存打爆。以上是server层的处理逻辑,在InnoDB引擎里又是怎么处理?全表扫描对InnoDB的影响InnoDB内存的一个作用,是保存更新的结果,再配合redo log,避免随机写盘。内存的数据页是在Buffer Pool (简称为BP)管理,在WAL里BP起加速更新的作用。BP还能加速查询。由于WAL,当事务提交时,磁盘上的数据页是旧的,若这时马上有个查询来读该数据页,是不是要马上把redo log应用到数据页?不需要。因为此时,内存数据页的结果是最新的,直接读内存页即可。这时查询无需读磁盘,直接从内存取结果,速度很快。所以,Buffer Pool能加速查询。而BP对查询的加速效果,依赖于一个重要的指标,即:内存命中率。可以在show engine innodb status结果中,查看一个系统当前的BP命中率。一般情况下,一个稳定服务的线上系统,要保证响应时间符合要求的话,内存命中率要在99%以上。执行show engine innodb status ,可以看到“Buffer pool hit rate”字样,显示的就是当前的命中率。比如下图命中率,就是100%。若所有查询需要的数据页都能够直接从内存得到,那是最好的,对应命中率100%。InnoDB Buffer Pool的大小是由参数 **「innodb_buffer_pool_size」**确定,一般建议设置成可用物理内存的60%~80%。在大约十年前,单机的数据量是上百个G,而物理内存是几个G;现在虽然很多服务器都能有128G甚至更高的内存,但是单机的数据量却达到了T级别。所以,**「innodb_buffer_pool_size」**小于磁盘数据量很常见。若一个 Buffer Pool满了,而又要从磁盘读入一个数据页,那肯定是要淘汰一个旧数据页的。InnoDB内存管理使用的最近最少使用 (Least Recently Used, LRU)算法,淘汰最久未使用数据。基本LRU算法InnoDB管理BP的LRU算法,是用链表实现的:state1,链表头部是P1,表示P1是最近刚被访问过的数据页此时,一个读请求访问P3,因此变成状态2,P3被移到最前状态3表示,这次访问的数据页不存在于链表,所以需要在BP中新申请一个数据页Px,加到链表头。但由于内存已满,不能申请新内存。于是清空链表末尾Pm数据页内存,存入Px的内容,放到链表头部最终就是最久没有被访问的数据页Pm被淘汰。若此时要做一个全表扫描,会咋样?若要扫描一个200G的表,而这个表是一个历史数据表,平时没有业务访问它。那么,按此算法扫描,就会把当前BP里的数据全部淘汰,存入扫描过程中访问到的数据页的内容。也就是说BP里主要放的是这个历史数据表的数据。对于一个正在做业务服务的库,这可不行呀。你会看到,BP内存命中率急剧下降,磁盘压力增加,SQL语句响应变慢。所以,InnoDB不能直接使用原始的LRU。InnoDB对其进行了优化。改进的LRU算法InnoDB按5:3比例把链表分成New区和Old区。图中LRU_old指向的就是old区域的第一个位置,是整个链表的5/8处。即靠近链表头部的5/8是New区域,靠近链表尾部的3/8是开发云主机域名old区域。改进后的LRU算法执行流程:状态1,要访问P3,由于P3在New区,和优化前LRU一样,将其移到链表头部 =》状态2之后要访问一个新的不存在于当前链表的数据页,这时依然是淘汰掉数据页Pm,但新插入的数据页Px,是放在**「LRU_old」**处处于old区的数据页,每次被访问的时候都要做如下判断:若该数据页在LRU链表中存在的时间超过1s,就把它移动到链表头部若该数据页在LRU链表中存在的时间短于1s,位置保持不变。1s是由参数**「innodb_old_blocks_time」**控制,默认值1000,单位ms。该策略,就是为了处理类似全表扫描的操作量身定制。还是扫描200G历史数据表:4. 扫描过程中,需要新插入的数据页,都被放到old区域5. 一个数据页里面有多条记录,这个数据页会被多次访问到,但由于是顺序扫描,这个数据页第一次被访问和最后一次被访问的时间间隔不会超过1秒,因此还是会被保留在old区域6. 再继续扫描后续的数据,之前的这个数据页之后也不会再被访问到,于是始终没有机会移到链表头部(New区),很快就会被淘汰出去。可以看到,这个策略最大的收益,就是在扫描这个大表的过程中,虽然也用到了BP,但对young区完全没有影响,从而保证了Buffer Pool响应正常业务的查询命中率。关于“MySQL数据查询太多会怎么样”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注开发云行业资讯频道,小编每天都会为大家更新不同的知识点。

相关推荐: mysql8修改my.ini配置后重启报错的解决方案

下面讲讲关于mysql8修改my.ini配置后重启报错的解决方案,文字的奥妙在于贴近主题相关。所以,闲话就不谈了,我们直接看下文吧,相信看完mysql8修改my.ini配置后重启报错的解决方案这篇文章你一定会有所受益。mysql8 修改my.in 配置重启服务…

免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。

(0)
打赏 微信扫一扫 微信扫一扫
上一篇 06/29 17:55
下一篇 06/29 17:55

相关推荐

发表评论

您的电子邮箱地址不会被公开。

[“助力站长”]投稿本站,经审核符合,赠送主机空间 或 享超低优惠;云主机免费试用,参见:www.if98.com