Dubbo-go Server 端开启服务过程是怎样的


Dubbo-go Server 端开启服务过程是怎样的,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。下面将介绍 dubbo-go 框架的基本使用方法,以及从 export 调用链的角度进行 server 端源码导读。当拿到一款框架之后,一种不错的源码阅读方式大致如下:从运行最基础的 helloworld demo 源码开始 —> 再查看配置文件—>开启各种依赖服务(比如zk、consul)—>开启服务端—>再到通过 client 调用服务端—>打印完整请求日志和回包。调用成功之后,再根据框架的设计模型,从配置文件解析开始,自顶向下递阅读整个框架的调用栈。对于 C/S 模式的 rpc 请求来说,整个调用栈被拆成了 client 和 server 两部分,所以可以分别从 server 端的配置文件解析阅读到 server 端的监听启动,从 client 端的配置文件解析阅读到一次 invoker Call 调用。这样一次完整请求就明晰了起来。将仓库 clone 到本地$gitclonehttps://github.com/dubbogo/dubbo-samples.git进入 dubbo 目录$cddubbo-samples/golang/helloworld/dubbo进入目录后可看到四个文件夹,分别支持 go 和 java 的 client 以及 server,我们尝试运行一个 go 的 server。进入 app子文件夹内,可以看到里面保存了 go 文件。$cdgo-server/appsample 文件结构可以在 go-server 里面看到三个文件夹:app、assembly、profiles。其中 app 文件夹下保存 go 源码,assembly 文件夹下保存可选的针对特定环境的 build 脚本,profiles 下保存配置文件。对于 d开发云主机域名ubbo-go 框架,配置文件非常重要,没有文件将导致服务无法启动。设置指向配置文件的环境变量由于 dubbo-go 框架依赖配置文件启动,让框架定位到配置文件的方式就是通过环境变量来找。对于 server 端需要两个必须配置的环境变量:CONF_PROVIDER_FILE_PATH、APP_LOG_CONF_FILE,分别应该指向服务端配置文件、日志配置文件。在 sample 里面,我们可以使用 dev 环境,即 profiles/dev/log.yml 和 profiles/dev/server.yml 两个文件。在 app/ 下,通过命令行中指定好这两个文件:$exportCONF_PROVIDER_FILE_PATH=”../profiles/dev/server.yml”$exportAPP_LOG_CONF_FILE=”../profiles/dev/log.yml”设置 go 代理并运行服务$gorun.如果提示 timeout,则需要设置 goproxy 代理。$exportGOPROXY=”http://goproxy.io”再运行 go run 即可开启服务。安装 zookeeper,并运行 zkServer, 默认为 2181 端口。进入 go-client 的源码目录$cdgo-client/app同理,在 /app 下配置环境变量$exportCONF_CONSUMER_FILE_PATH=”../profiles/dev/client.yml”$exportAPP_LOG_CONF_FILE=”../profiles/dev/log.yml”配置 go 代理:$exportGOPROXY=”http://goproxy.io”运行程序$gorun.即可在日志中找到打印出的请求结果:responseresult:&{A001AlexStocks182020-10-2814:52:49.131+0800CST}同样,在运行的 server 中,也可以在日志中找到打印出的请求:req:[]interface{}{“A001″}rsp:main.User{Id:”A001″,Name:”AlexStocks”,Age:18,Time:time.Time{…}恭喜!一次基于 dubbo-go 的 rpc 调用成功。当日志开始部分出现 profiderInit 和 ConsumerInit 均失败的日志,检查环境变量中配置路径是否正确,配置文件是否正确。当日志中出现 register 失败的情况,一般为向注册中心注册失败,检查注册中心是否开启,检查配置文件中关于 register 的端口是否正确。sample 的默认开启端口为 20000,确保启动前无占用。dubbo-go 框架的 example 提供的目录如下:app/ 文件夹下存放源码,可以自己编写环境变量配置脚本 buliddev.shassembly/ 文件夹下存放不同平台的构建脚本profiles/ 文件夹下存放不同环境的配置文件target/ 文件夹下存放可执行文件源码放置在 app/ 文件夹下,主要包含 server.go 和 user.go 两个文件,顾名思义,server.go 用于使用框架开启服务以及注册传输协议;user.go 则定义了 rpc-service 结构体,以及传输协议的结构。user.go可以看到,user.go 中存在 init 函数,是服务端代码中最先被执行的部分。User 为用户自定义的传输结构体,UserProvider 为用户自定义的 rpc_service;包含一个 rpc函数,GetUser。当然,用户可以自定义其他的rpc 功能函数。在 init 函数中,调用 config 的 SetProviderService 函数,将当前 rpc_service 注册在框架 config 上。可以查看 dubbo 官方文档提供的设计图:service 层下面就是 config 层,用户服务会逐层向下注册,最终实现服务端的暴露。rpc-service 注册完毕之后,调用 hessian 接口注册传输结构体 User。至此,init 函数执行完毕。server.go之后执行 main 函数。main 函数中只进行了两个操作,首先使用 hessian 注册组件将 User 结构体注册(与之前略有重复),从而可以在接下来使用 getty 打解包。之后调用 config.Load 函数,该函数位于框架 config/config_loader.go 内,这个函数是整个框架服务的启动点,下面会详细讲这个函数内重要的配置处理过程。执行完 Load() 函数之后,配置文件会读入框架,之后根据配置文件的内容,将注册的 service 实现到配置结构里,再调用 Export 暴露给特定的 registry,进而开启特定的 service 进行对应端口的 tcp 监听,成功启动并且暴露服务。最终开启信号监听 initSignal() 优雅地结束一个服务的启动过程。客户端包含 client.go 和 user.go 两个文件,其中 user.go 与服务端完全一致,不再赘述。client.gomain 函数和服务端也类似,首先将传输结构注册到 hessian 上,再调用 config.Load() 函数。在下文会介绍,客户端和服务端会根据配置类型执行 config.Load() 中特定的函数 loadConsumerConfig() 和 loadProviderConfig(),从而达到“开启服务”、“调用服务”的目的。加载完配置之后,还是通过实现服务、增加函数 proxy、申请 registry 和 reloadInvoker 指向服务端 ip 等操作,重写了客户端实例 userProvider 的对应函数,这时再通过调用 GetUser 函数,可以直接通过 invoker,调用到已经开启的服务端,实现 rpc 过程。下面会从 server 端和 client 端两个角度,详细讲解服务启动、registry 注册和调用过程。var providerConfigStr = xxxxx// 配置文件内容,可以参考log 和 client。在这里你可以定义配置文件的获取方式,比如配置中心,本地文件读取。log 地址:https://github.com/dubbogo/dubbo-samples/blob/master/golang/helloworld/dubbo/go-client/profiles/release/log.yml client 地址:https://github.com/dubbogo/dubbo-samples/blob/master/golang/helloworld/dubbo/go-client/profiles/release/client.yml在 config.Load() 之前设置配置,例如:var consumerConfigStr= xxxxx// 配置文件内容,可以参考log 和 clien。在这里你可以定义配置文件的获取方式,比如配置中心,本地文件读取。在 config.Load() 之前设置配置,例如:服务暴露过程涉及到多次原始 rpcService 的封装、暴露,网上其他文章的图感觉太过笼统,在此,简要地绘制了一个用户定义服务的数据流图:在加载配置之前,框架提供了很多已定义好的协议、工厂等组件,都会在对应模块 init 函数内注册到 extension 模块上,以供接下来配置文件中进行选用。其中重要的有:默认函数代理工厂:common/proxy/proxy_factory/default.go它的作用是将原始 rpc-service 进行封装,形成 proxy_invoker,更易于实现远程 call 调用,详情可见其 invoke 函数。注册中心注册协议: registry/protocol/protocol.go它负责将 invoker 暴露给对应注册中心,比如 zk 注册中心。zookeeper 注册协议:registry/zookeeper/zookeeper.go它合并了 base_resiger,负责在服务暴露过程中,将服务注册在 zookeeper 注册器上,从而为调用者提供调用方法。dubbo 传输协议:protocol/dubbo/dubbo.go它负责监听对应端口,将具体的服务暴露,并启动对应的事件 handler,将远程调用的 event 事件传递到 invoker 内部,调用本地 invoker 并获得执行结果返回。filter 包装调用链协议:protocol/protocolwrapper/protocol_filter_wrapper.go它负责在服务暴露过程中,将代理 invoker 打包,通过配置好的 filter 形成调用链,并交付给 dubbo 协议进行暴露。上述提前注册好的框架已实现的组件,在整个服务暴露调用链中都会用到,会根据配置取其所需。服务端需要的重要配置有三个字段:services、protocols、registries。profiles/dev/server.yml:其中 service 指定了要暴露的 rpc-service 名(”UserProvider)、暴露的协议名(”dubbo”)、注册的协议名(“demoZk”)、暴露的服务所处的 interface、负载均衡策略、集群失败策略及调用的方法等等。其中,中间服务的协议名需要和 registries 下的 mapkey 对应,暴露的协议名需要和 protocols 下的 mapkey 对应。可以看到上述例子中,使用了 dubbo 作为暴露协议,使用了 zookeeper 作为中间注册协议,并且给定了端口。如果 zk 需要设置用户名和密码,也可以在配置中写好。config/config_loader.go::Load()在上述 example 的 main 函数中,有 config.Load() 函数的直接调用,该函数执行细节如下:在本文中,我们重点关心 loadConsumerConfig() 和 loadProviderConfig() 两个函数。对于 provider 端,可以看到 loadProviderConfig() 函数代码如下:前半部分是配置的读入和检查,进入 for 循环后,是单个 service 的暴露起始点。前面提到,在配置文件中已经写好了要暴露的 service 的种种信息,比如服务名、interface 名、method 名等等。在图中 for 循环内,会将所有 service 的服务依次实现。for 循环的第一行,根据 key 调用 GetProviderService 函数,拿到注册的 rpcService 实例,这里对应上述提到的 init 函数中,用户手动注册的自己实现的 rpc-service 实例:这个对象也就成为了 for 循环中的 rpcService 变量,将这个对象注册通过 Implement 函数写到 sys(ServiceConfig 类型)上,设置好 sys 的 key 和协议组,最终调用了 sys 的 Export 方法。此处对应流程图的部分:至此,框架配置结构体已经拿到了所有 service 有关的配置,以及用户定义好的 rpc-service 实例,它触发了 Export 方法,旨在将自己的实例暴露出去。这是 Export 调用链的起始点。config/service_config.go::Export()接下来进入 ServiceConfig.Export() 函数.这个函数进行了一些细碎的操作,比如为不同的协议分配随机端口,如果指定了多个中心注册协议,则会将服务通过多个中心注册协议的 registryProtocol 暴露出去,我们只关心对于一个注册协议是如何操作的。还有一些操作比如生成调用 url 和注册 url,用于为暴露做准备。registryUrl 是用来向中心注册组件发起注册请求的,对于 zookeeper 的话,会传入其 ip 和端口号,以及附加的用户名密码等信息。这个 regUrl 目前只存有注册(zk)相关信息,后续会补写入 ServiceIvk,即服务调用相关信息,里面包含了方法名,参数等…这个 Register 函数将服务实例注册了两次,一次是以 Interface 为 key 写入接口服务组内,一次是以 interface 和 proto 为 key 写入特定的一个唯一的服务。后续会从 common.Map 里面取出来这个实例。这一步的 GetProxyFactory(“default”) 方法获取默认代理工厂,通过传入上述构造的 regUrl,将 url 封装入代理 invoker。可以进入 common/proxy/proxy_factory/default.go::ProxyInvoker.Invoke() 函数里,看到对于 common.Map 取用为 svc 的部分,以及关于 svc 对应 Method 的实际调用 Call 的函数如下:到这里,上面 GetInvoker(*regUrl) 返回的 invoker 即为 proxy_invoker,它封装好了用户定义的 rpc_service,并将具体的调用逻辑封装入了 Invoke 函数内。为什么使用 Proxy_invoker 来调用?通过这个 proxy_invoke 调用用户的功能函数,调用方式将更加抽象化,可以在代码中看到,通过 ins 和 outs 来定义入参和出参,将整个调用逻辑抽象化为 invocation 结构体,而将具体的函数名的选择、参数向下传递和 reflect 反射过程封装在 invoke 函数内,这样的设计更有利于之后远程调用。个人认为这是 dubbo Invoke 调用链的设计思想。至此,实现了图中对应的部分:上面,我们执行到了 exporter = c.cacheProtocol.Export(invoker)。这里的 cacheProtocol 为一层缓存设计,对应到原始的 demo 上,这里是默认实现好的 registryProtocol。registry/protocol/protocol.go::Export()这个函数内构造了多个 EventListener,非常有 java 的设计感。我们只关心服务暴露的过程,先忽略这些监听器。一层缓存操作,如果 cache 没有需要从 common 里面重新拿 zkRegistry。上述拿到了具体的 zkRegistry 实例,该实例的定义在:registry/zookeeper/registry.go。该结构体组合了 registry.BaseRegistry 结构,base 结构定义了注册器基础的功能函数,比如 Registry、Subscribe 等,但在这些默认定义的函数内部,还是会调用 facade 层(zkRegistry 层)的具体实现函数,这一设计模型能在保证已有功能函数不需要重复定义的同时,引入外层函数的实现,类似于结构体继承却又复用了代码。这一设计模式值得学习。我们查看上述 registry/protocol/protocol.go:: Export() 函数,直接调用了:将已有 RegistryUrl 注册到了 zkRegistry 上。这一步调用了 baseRegistry 的 Register 函数,进而调用 zkRegister 的 DoRegister 函数,进而调用:在这个函数里,将对应 root 创造一个新的节点。并且写入具体 node 信息,node 为 url 经过 encode 的结果,包含了服务端的调用方式。这部分的代码较为复杂,具体可以看 baseRegistry 的processURL() 函数:http://t.tb.cn/6Xje4bijnsIDNaSmyPc4Ot。至此,将服务端调用 url 注册到了 zookeeper 上,而客户端如果想获取到这个 url,只需要传入特定的 dubboPath,向 zk 请求即可。目前 client 是可以获取到访问方式了,但服务端的特定服务还没有启动,还没有开启特定协议端口的监听,这也是 registry/protocol/protocol.go:: Export() 函数接下来要做的事情。新建一个 WrappedInvoker,用于之后链式调用。拿到提前实现并注册好的 ProtocolFilterWrapper,调用 Export 方法,进一步暴露。protocol/protocolwrapped/protocol_filter_wrapper.go:Export()protocol/protocolwrapped/protocol_filter_wrapper.go:buildInvokerChain可见,根据配置的内容,通过链式调用的构造,将 proxy_invoker 层层包裹在调用链的最底部,最终返回一个调用链 invoker。对应图中部分:至此,我们已经拿到 filter 调用链,期待将这个 chain 暴露到特定端口,用于相应请求事件。protocol/protocolwrapped/protocol_filter_wrapper.go:Export()回到上述 Export 函数的最后一行,调用了 dubboProtocol 的 Export 方法,将上述 chain 真正暴露。该 Export 方法的具体实现在:protocol/dubbo/dubbo_protocol.go: Export()。这一函数做了两个事情:构造触发器、启动服务。将传入的 Invoker 调用 chain 进一步封装,封装成一个 exporter,再将这个 export 放入 map 保存。注意!这里把exporter 放入了 SetExporterMap中,在下面服务启动的时候,会以注册事件监听器的形式将这个 exporter 取出!调用 dubboProtocol 的 openServer 方法,开启一个针对特定端口的监听。如上图所示,一个 Session 被传入,开启对应端口的事件监听。至此构造出了 exporter,完成图中部分:上述只是启动了服务,但还没有看到触发事件的细节,点进上面的 s.newSession 可以看到,dubbo 协议为一个 getty 的 session 默认使用了如下配置:其中很重要的一个配置是 EventListener,传入的是 dubboServer 的默认 rpcHandler。protocol/dubbo/listener.go:OnMessage()rpcHandler 有一个实现好的 OnMessage 函数,根据 getty 的 API,当 client 调用该端口时,会触发 OnMessage。这一函数实现了在 getty session 接收到 rpc 调用后的一系列处理:传入包的解析根据请求包构造请求 url拿到对应请求 key,找到要被调用的 exporter拿到对应的 Invoker构造 invocation调用返回整个被调过程一气呵成。实现了从 getty.Session 的调用事件,到经过层层封装的 invoker 的调用。至此,一次 rpc 调用得以正确返回。关于 Invoker 的层层封装能把一次调用抽象成一次 invoke;能把一个协议抽象成针对 invoke 的封装;能把针对一次 invoke 所做出的特定改变封装到 invoke 函数内部,可以降低模块之间的耦合性。层层封装逻辑更加清晰。关于 URL 的抽象关于 dubbo 的统一化请求对象 URL 的极度抽象是之前没有见过的… 个人认为这样封装能保证请求参数列表的简化和一致。但在开发的过程中,滥用极度抽象的接口可能造成… debug 的困难?以及不知道哪些字段是当前已经封装好的,哪些字段是无用的。关于协议的理解之前理解的协议还是太过具体化了,而关于 dubbo-go 对于 dubboProtocol 的协议,我认为是基于 getty 的进一步封装,它定义了客户端和服务端,对于 getty 的 session 应该有哪些特定的操作,从而保证主调和被调的协议一致性,而这种保证也是一种协议的体现,是由 dubbo 协议来规范的。看完上述内容,你们掌握Dubbo-go Server 端开启服务过程是怎样的的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注开发云行业资讯频道,感谢各位的阅读!

相关推荐: 如何构建基于WAF的s3cmd安全体系

这篇文章主要讲解了“如何构建基于WAF的s3cmd安全体系”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何构建基于WAF的s3cmd安全体系”吧!有线上项目需要对RGW的bucket的访问进行白名单控制,只允…

免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。

(0)
打赏 微信扫一扫 微信扫一扫
上一篇 06/04 13:21
下一篇 06/04 13:22

相关推荐